
Journal of Money, Investment and Banking 
ISSN 1450-288X Issue 7 (2009) 
© EuroJournals Publishing, Inc. 2009 
http://www.eurojournals.com/JMIB.htm 

 
Forecasting China Stock Markets Volatility via GARCH Models 

Under Skewed-GED Distribution 
 
 

Hung-Chun Liu 
Assistant Professor, Department of Finance, Minghsin University of Science & Technology 

No.1 Xin-xing Rd., Xinfeng 30401, Hsinchu County, Taiwan (R.O.C.) 
E-mail: hungchun65@gmail.com 
Tel: +886-3-5593142; Ext: 3412 

 
Yen-Hsien Lee 

Assistant Professor, Department of Finance, Chung-Yuan Christian University 
No. 200 Chung-pei Rd., Chun Li 32023, Taiwan (R.O.C.) 

 
Ming-Chih Lee 

Associate Professor, Department of Banking & Finance, Tamkang University 
No.151 Ying-Chuan Rd., Tamsui 251, Taipei County, Taiwan (R.O.C.) 

 
 

Abstract 
 

This study investigates how specification of return distribution influences the 
performance of volatility forecasting using two GARCH models (GARCH-N and GARCH-
SGED). Daily spot prices on the Shanghai and Shenzhen composite stock indices provide 
the empirical sample for discussing and comparing the relative out-of-sample volatility 
predictive ability, given the growth potential of stock markets in China in the eyes of global 
investors. Empirical results indicate that the GARCH-SGED model is superior to the 
GARCH-N model in forecasting China stock markets volatility, for all forecast horizons 
when model selection is based on MSE or MAE. Meanwhile, the DM-tests further confirm 
that volatility forecasts by the GARCH-SGED model are more accurate than those 
generated using the GARCH-N model in all cases, indicating the significance of both 
skewness and tail-thickness in the conditional distribution of returns, especially for the 
emerging financial markets. 
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1.  Introduction and Motivation 
Following the stock market crash of 1987, stock price volatility has been the focus of regulators, 
academic researchers and practitioners concern. Volatility forecasts of stock price are crucial inputs for 
pricing derivatives as well as trading and hedging strategies. In addition, the introduction of the first 
Basel Accord in 1996, which set minimum capital reserve requirements to be held by financial 
institutions proportional to their estimated risks, has further highlighted the significance of volatility 
prediction due to its essential role in calculating value-at-risk (VaR). Given these facts, the quest for 
accurate forecasts appears to still be ongoing. 
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Over the past two decades, a large volume of articles have been discussed and written about the 
volatility of stock returns for developed capital markets. Recently, the potential for China stock 
markets growth in the emerging countries has received a great deal of attention of qualified foreign 
institutional investor and global investors. Surprisingly, the annual rate of return for the Shanghai and 
Shenzhen composite indices in China were 81.7% and 66.3%, respectively, during 2006. However, this 
rapid growth has been accompanied by high risk. Unfortunately, there has been relatively little work 
done on modeling and forecasting stock market volatility in China (see, e.g., Xu, 1999; Lee et al., 
2001) provided that it has significantly different risk and return characteristics from developed stock 
markets. Owing to the increasing volatility of the emerging China stock markets, accurate volatility 
forecasts have become a crucial issue. 

It is well known that financial returns are often characterized by a number of typical ‘stylized 
facts’ such as volatility clustering, persistence and time variation of volatility. The generalized 
autoregressive conditional heteroskedasticity (GARCH) genre of volatility models is regarded as an 
appealing technique to cater to the aforesaid empirical phenomena. The existing literature has long 
been recognized that the distribution of returns can be skewed. For instance, for some stock market 
indices, returns are skewed toward the left, indicating that there are more negative than positive 
outlying observations. The intrinsically symmetric distribution, such as normal, student-t or 
generalized error distribution (GED) cannot cope with such skewness. Consequently, one can expect 
that forecasts and forecast error variances from a GARCH model may be biased for skewed financial 
time series. 

The focus is the out-of-sample forecasting performance of the GARCH model with skewed 
generalized error distribution (SGED) relative to the traditionally standard GARCH model, which does 
not take the skewness into account. Illustrations of these techniques are presented for two main stock 
markets in China, the Shanghai and Shenzhen composite stock indices, which are considered more 
interesting and attractive than that of general developed markets. 

The remainder of this paper is organized as follows. Section 2 presents a brief literature review. 
Section 3 describes the adopted econometric methodology. The data description and empirical results 
are then reported in Section 4. Summary and concluding remarks are presented in the last Section. 
 
 
2.  Literature Review 
In modern finance theory, Markowitz (1952) used asset returns volatility as a measure of risk. The 
existing literature has supported that most time series data of financial assets exhibit linear dependence 
in volatility, which is referred to as volatility clustering in econometrics and empirical finance. Engle 
(1982) first proposed the ARCH (Autoregressive conditional heteroskedasticity; ARCH) model, which 
assumes normal errors for asset returns and successfully captures a number of stylized facts of financial 
assets, such as time-varying volatility and volatility clustering. The traditional econometric time series 
models generally assume a normal distribution of stock returns. However, the financial literature has 
long been aware that financial returns are non-normal and tend to have leptokurtic and fat-tailed 
distribution (Mandelbrot, 1963; Fama, 1965). Moreover, Hsu et al. (1974) and Hagerman (1978) found 
that the empirical distribution of stock returns is also significantly non-normal. Therefore, to modify 
the traditional assumption of normality of the ARCH model, Bollerslev (1987) applied the GARCH-t 
model, which assumes that the residual of asset returns follows the student t distribution in order to 
capture fat-tailed characteristic of time series data abstemiously. Because of the drawback of lower 
kurtosis of student t distribution, the student t distribution does still not adequately describe the 
leptokurtic phenomenon of returns distribution. Based on the seminal works by Mandelbrot (1963) and 
Fama (1965), there is widespread recognition that financial returns exhibit positive excess kurtosis and 
heavy tails. In this framework, several distributions for returns innovation have been proposed to take 
into account the excess kurtosis. For example, researchers have proposed the use of the generalized 
error distribution (Nelson, 1991; Taylor, 1994; Lopez, 2001; Lee et al., 2001; Marcucci, 2005) or the 
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heavy-tailed distribution (Politis, 2004) to alleviate this problem. Note that the aforesaid distributions 
can properly capture the excess kurtosis, but impose the restriction of symmetry which is not always 
valid for financial data. Furthermore, Mittnik and Paolella (2000) also indicate that return is the 
presence of excessively fatter tails and pronounced skewness and a consequence of strong volatility 
clustering. Non-Gaussian time series thus have begun to receive considerable attention and forecasting 
methods are gradually being developed. 

Many empirical studies have found evidence that conditional modeling with asymmetry1 in the 
volatility process cannot capture the skewness and tail-thickness of financial returns distribution and 
make the use of skewed-t distribution (Hansen, 1994). Subsequently, Theodossiou (2000) proposed a 
skewed generalized error distribution (hereafter, SGED) for modeling the empirical distribution of 
financial asset returns, while Lehnert (2003) incorporated the SGED return innovation into the 
GARCH model to analyze in- and out-of-sample option pricing performance using DAX index options. 
Additionally, Bali (2007) modeled the nonlinear dynamics of short-term interest rate volatility with 
SGED distributions, and concluded that the level-GARCH model that accommodates the tail-thickness 
of interest rate distribution generates satisfactory volatility forecasts of short-term interest rates. 
Accordingly, recent developments share a common characteristic: They account for asymmetrically 
distributional assumption in return innovations. 

Xu (1999) and Lee et al. (2001) are two recent papers that estimate volatility for stock markets 
in China. Xu (1999) modeled volatility for daily spot returns of Shanghai composite stock index from 
May 21, 1992 to July 14, 1995 and tested the in-sample goodness-of-fit of various competing models. 
He found that the GARCH model is superior to that of either EGARCH or GJR-GARCH models, 
indicating that there is almost no so-called leverage effect in the Shanghai stock market since volatility 
is mainly caused by governmental policy on stock markets under the present financial system. 2 Lee et 
al. (2001) examined time-series features of stock returns and volatility in four of China’s stock 
exchanges. 3 They provided strong evidence of time-varying volatility and indicated volatility is highly 
persistent and predictable. Moreover, evidence in support of a fat-tailed conditional distribution of 
returns was found. The papers by Xu (1999) and Lee et al. (2001) just focus on the in-sample 
goodness-of-fit of volatility models. However, a good starting point to judge competitive models is to 
assess their out-of-sample forecasting performance. In addition, a leptokurtic and skewed returns 
distribution should be considered when using emerging market data. 

This study considers the applicability of the GARCH(1,1) model in modeling volatility for the 
Shanghai and Shenzhen composite stock indices. We adopt SGED errors in the estimation, thus 
allowing flexible treatment of both skewness and tail-thickness to further enhance the robustness of the 
estimation results. This study chooses an adaptive volatility model for the China stock market by 
examining the relative out-of-sample predictive ability of the GARCH-N and GARCH-SGED models 
on daily Shanghai and Shenzhen stock return data. Particularly, the forecast horizon is extended to 
include 1-, 2-, 5-, 10- and 20-day forecasts. Awartani and Corradi (2005) show that the use of squared 
returns as a proxy for volatility ensures the correct ranking of predictive models in terms of a quadratic 
loss function. Therefore, when the true underlying volatility process is not observed, this study uses 
squared returns as a proxy for latent volatility. The empirical analysis comprises two steps: The first 
step involves obtaining an overview of the predictive ability of the various models by computing their 
out-of-sample mean squared errors (MSE) and mean absolute errors (MAE). Since these two summary 
statistics do not provide a statistical test of the difference between the two models. The DM-test which 
has been advocated by Diebold and Mariano (1995) is thus used to further examine the relative out-of-
sample predictive ability of various GARCH models. 

                                                 
1 The asymmetric volatility of stock returns is meant as leverage effect (Black, 1976), volatility feedback or time-varying risk premium (Bekaert and Wu, 

2000).  
2 This fact is encouraging in using a symmetric GARCH model for modeling the volatility dynamics of stock markets in China. Furthermore, several 

recent articles (e.g., Sadorsky, 2006; Hung et al., 2008) have reported more new evidence in favor of the parsimonious GARCH(1,1) model in providing 
accurate volatility forecasts. 

3 Their four China stock market price indices comprise the Shanghai ‘A’ share index, Shanghai ‘B’ share index, Shenzhen ‘A’ share index and Shenzhen 
‘B’ share index. 



Journal of Money, Investment and Banking - Issue 7 (2009) 8 

3.  Volatility Modelling and Performance Evaluation 
3.1 GARCH(1,1) Model with Normal and Skewed-GED Distributions 

Let rt=100(lnSt -lnSt-1), where tS  denotes the stock price, tr denotes the continuously compounded daily 
returns of the underlying assets on time t, and t 1−Ω  denotes the information set of all observed returns 
up to time t 1− . The GARCH(1,1) model can be formulated as follows: 

iid

t t 1 t t t t t t 1r ar ,   z ,   z | ~ f (0,1)− −= μ + + ε ε = σ Ω  (1) 
2 2 2
t t 1 t 1− −σ = ω+αε +βσ  (2) 

where μ  and a are constant parameters, tε  is the innovation process, f (0,1)  is a density function with 
zero mean and unit variance. Moreover, ω , α , β  are nonnegative parameters with 1α +β <  to ensure 
the positive of conditional variance and stationarity as well. In the empirical investigation, two 
conditional distributions for the error term ( tz ) were considered: (i) a standard normal distribution, and 
(ii) a SGED distribution. The density function of the standard normal distribution can be expressed as 
follows: 

0.5 2
t tf (z ) (2 ) exp( z / 2)−= π −  (3) 

Consequently, the log-likelihood function of the GARCH(1,1) model with normally 
distributional errors (hereafter, GARCH-N) can be derived as: 

2T
2 t

n t 2
t 1 t

1LL(Ψ ) ln2π ln
2 =

⎛ ⎞ε
= − ⋅ + σ +⎜ ⎟σ⎝ ⎠

∑  (4) 

where nΨ =[ , a, , , ]μ ω α β  denotes the parameter vector of the GARCH-N model. 
Most of the empirical literature finds evidence that conditional modeling with asymmetry in the 

volatility process cannot capture the skewness and tail-thickness of financial return distributions. To 
accommodate these empirical distributional phenomena, this present study makes use of the SGED 
distribution which has been advocated by Theodossiou (2000), allowing returns innovation to follow a 
flexible treatment of both skewness and tail-thickness in the conditional distribution of returns. The 
density function of the standardized SGED distribution can be expressed as follows: 

t
t

t

| z |f (z | , ) C exp
[1 sign(z ) ]

υ

υ υ

⎛ ⎞− δ
υ λ = ⋅ −⎜ ⎟− − δ λ θ⎝ ⎠

 (5) 

where, 
1C (2 (1/ ))−= υ θ⋅Γ υ  (6) 

0.5 0.5 1(1/ ) (3 / ) S( )− −θ = Γ υ Γ υ λ  (7) 
12 A S( )−δ = λ ⋅ ⋅ λ  (8) 

2 2 2S( ) 1 3 4Aλ = + λ − λ  (9) 
0.5 0.5A (2 / ) (1/ ) (3 / )− −= Γ υ Γ υ Γ υ  (10) 

where the shape parameter υ  governs the height and fat-tails of the density function with constraint 
0υ > , while λ  is a skewness parameter of the density with 1 1− < λ < . In the case of positive 

(negative) skewness, the density function skews toward to the right (left). Sign is the sign function. 
Particularly, the SGED distribution turns out to be the standard normal distribution when 2υ =  and 

0λ = . The log-likelihood function of the GARCH(1,1) model with standardized SGED errors 
(hereafter, GARCH-SGED) can be derived as: 

( )

T
t t

SGED t
t 1 t t

| / |LL(Ψ ) T ln C ln
1 sign /

υ

υ υ
=

⎛ ⎞ε σ − δ⎜ ⎟= − + σ
⎜ ⎟− ε σ − δ λ θ⎡ ⎤⎣ ⎦⎝ ⎠

∑  (11) 

where SGEDΨ =[ , a, , , , , ]μ ω α β υ λ  denotes the vector of parameters to be estimated. 
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3.2. Volatility Forecasts 

The out-of-sample volatility (variance) forecasts of the GARCH(1,1) model follows a rolling window 
scheme to implement and evaluate the model-based volatility. Let T=R+P 4, where R denotes the 
rolling window, P denotes the rolling time and T is the sample observations. The rolling window 
scheme works in the following manner: At the first step, we use observations from 1 to R, in the 
second from 2 to R+1, and finally from R to R+P-1. In this way, the rolling window R stays fixed and 
the forecasts do not overlap. The conditional variance at time t is 

2 2 2
t t 1 t 1− −σ = ω+αε +βσ  (12) 

The forecast of 2
tσ  given information t 1−Ω  can be formulated as 

2 2
t t 1 t 1E( | ) ( )− −σ Ω = ω+ α +β σ  (13) 

Thus, the one-step-ahead forecast at time t+1 is given by 
2 2
t 1 t

ˆˆ ˆˆ ˆ( )+σ = ω+ α +β σ  (14) 

where parameters ω̂ , α̂  and β̂  are estimated by QMLE (Quasi Maximum Likelihood Estimation; 
QMLE) according to the BFGS optimization algorithm. Meanwhile, the h-step-ahead forecast can be 
generated as follows: 

h
2 h 2
t h t

ˆˆ ˆ(1 ( ) ) ˆˆˆ ˆ( )ˆˆ1 ( )+
ω − α +β

σ = + α +β σ
− α +β

 (15) 

where 2
tσ̂  is the volatility forecast generated from Eq(2). 

 
3.3. Evaluation of Volatility Forecasting Performance 

3.3.1. Loss Functions 
In order to evaluate the predictive ability of various competing models, this study utilizes square 
returns ( 2

tr ) as a proxy for the latent volatility (Brailsford and Faff, 1996; Brooks and Persand, 2002; 
Sadorsky, 2006). 5 The forecasting performance of competing models is evaluated using standard 
forecast appraisal criteria, namely, mean squared error (MSE) and mean absolute error (MAE), 
presented in the following equations: 

( )
P / h 22 2

t h t h
t 1

hMSE r
P + +

=

= −σ∑  (16) 

P / h
2 2
t h t h

t 1

hMAE r
P + +

=

= −σ∑  (17) 

where 2
t hr +  and 2

t h+σ  denote the ex post and the forecasted variance over horizon h made at day t, 
respectively. 
 
3.3.2. Model Significance TEST (DM-test) 
Diebold and Mariano (1995) proposed a test of forecast accuracy between two sets of forecasts using 
the MSE. Such a test is based on the null hypothesis of no difference in the accuracy (equal predictive 
ability) of the two competing models. The null hypothesis of equal forecast accuracy is tested based on 
E(dt)=0 where E is the mathematical expectation operator and 2 2

t A,t B,td e e= − . The variable A,te  and 

B,te  are forecast errors generated by two competing models A and B, respectively. The DM-test 
statistic is as follows: 

                                                 
4 In this study, models are estimated for a total of 1250 observations (R = 1250), and there are about 400 one-ahead volatility forecasts (P = 400). 
5 Awartani and Corradi (2005) demonstrated that the use of squared returns as a proxy for volatility ensures a correct ranking of forecasting models in 

terms of a quadratic error statistic, such as the mean squared errors. 
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a
0.5ˆDM d (V(d)) N(0,1)−= ⋅  (18) 

where P1
tP t 1

d d
=

= ∑ , h 11
0 kk 1

V̂(d) P ( 2 )−−
=

≈ γ + γ∑  and P, h step forecasts are computed from models A 

and B. Moreover, the variable kγ  denotes the k-th autocovariance of dt. Under the null hypothesis of 
equal predictive ability, the DM-test statistic has a standard normal distribution asymptotically 6 
 
 
4.  Data Description and Empirical Results 
4.1. Data Description 

The data for this study consists of China stock markets, including Shanghai and Shenzhen composite 
stock indices. Daily closing spot price indices (adjusted for dividends) for a total of 1683 observations 
are obtained from the Bloomberg database. The sample period is from January 4, 2000 to December 
29, 2006. To save space, we do not report the descriptive graphs of stock indices in China. Note that 
the graphs of levels of indices show that both the Shanghai and Shenzhen composite indices in China 
display pictures of volatile bull markets during 2006, implying that the emerging stock markets are 
empirically appealing than the developed capital markets. In addition, the QQ-plots indicate that fat 
tails are not symmetric, providing evidence in favor of SGED distribution with flexible treatment of fat 
tails and skewness in the conditional distribution of returns series. 
 
Table 1: Descriptive statistics of stock indices in China 
 
Index Shanghai Shenzhen 
Mean 0.0382 0.0168 
Maximum 9.4007 9.2438 
Minimum -6.5429 -7.3839 
Std. Dev. 1.3601 1.4539 
Skewness 0.6137* 0.3314* 
Kurtosis 5.3273* 4.8384* 
J-B 2094.5976* 1671.4759* 
Q2(12) 81.4956* 119.6785* 

Notes 1: * denote significantly at the 1% level. 2. Q2(12) denote the Ljung-Box Q test for 12th order serial correlation of the squared returns. 3. J-B 
statistics are based on Jarque and Bera (1987) and are asymptotically chi-squared-distributed with 2 degrees of freedom. 

 
Table 1 summarizes the basic statistical characteristics of the return series. 7 The average daily 

returns are positive and very small compared with the variable standard deviation. Each of the index 
price returns displays significant evidence of skewness and kurtosis. Both of the series are skewed 
towards the right, indicating that there are more positive than negative outlying returns in China stock 
markets. Additionally, each series is characterized by a distribution with tails that are significantly 
fatter than for a normal distribution. Such evidence thus suggests for using the SGED distribution to 
ingratiate both the leptokurtic and skewness character of these return series. J-B normality test 
statistics, indicating that neither return series has normal distribution. Moreover, the Ljung-Box Q2(12) 
statistics for the squared returns indicate that the return series exhibit linear dependence and strong 
ARCH effects. Preliminary analysis of the data suggests the use of a GARCH technique for capturing 
the time-varying volatility. Consequently, incorporating skewed-GED returns innovation into the 
GARCH model can be expected to generate satisfactory volatility forecasts for China stock indices. 
 
4.2. Estimation Results 

The estimation results of the GARCH-N and GARCH-SGED for Shanghai and Shenzhen composite 
indices during the in-sample period are listed in Table 2. From panel A, the sums of parameters α  and 

                                                 
6 Adopting Monte Carlo simulation, Diebold and Mariano (1995) demonstrated that such test statistic performs well in a number of applied situations. 
7 The unit root tests indicate no evidence of non-stationarity in the returns of Shanghai and Shenzhen composite stock indices. 
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β  for these two models are less than one, and thus ensure that the conditions for stationary covariance 
hold. The parameters λ  and υ  of the GARCH-SGED model which range from 0.057 to 0.084 and 
1.105 to 1.127, respectively, are all statistically significant, at the 1% level. It reveals that the 
distributions of returns series are right-skewed and fat-tailed. Turing the discussion to panel B, 
diagnostics of the standardized residuals of GARCH-N and GARCH-SGED models confirm that the 
GARCH(1,1) specification in these models is sufficient to correct the serial correlation of these two 
returns series in the conditional variance equation. Furthermore, the LR-test statistics indicate no 
evidence of normality for either stock index. This provides evidence in favor of skewed generalized 
error distribution for modeling the empirical distribution of stock returns in China. 
 
Table 2: Estimation results of alternate GARCH models 
 

Panel A. Estimates and standard errors 
Shanghai Shenzhen 

Parameter GARCH-N GARCH-SGED GARCH-N GARCH-SGED 
μ  -0.018 (0.028) -0.046 (0.030) -0.031 (0.030) -0.031 (0.032) 
a 0.019 (0.029) -0.004 (0.023) 0.043 (0.029) -0.001 (0.016) 
ω  0.075* (0.006) 0.199* (0.052) 0.291* (0.012) 0.189* (0.050) 
α  0.136* (0.005) 0.160* (0.034) 0.251* (0.011) 0.191* (0.036) 
β  0.829* (0.004) 0.738* (0.047) 0.634* (0.008) 0.733* (0.046) 
λ  - 0.057* (0.017) - 0.084* (0.027) 
υ  - 1.105* (0.045) - 1.127* (0.048) 

Panel B. Diagnostic tests 
Q2(12) 8.327 3.517 8.486 8.514 

LL -2045.2 -2007.4 -2140.5 -2077.2 
LR-test 75.6* 126.6* 

Notes: 1. * denotes significantly at the 1% level. 2. Standard errors for the estimators are included in parentheses. 3. Q2(12) is the Ljung-Box Q test for 
serial correlation in the squared standardized residuals with 12 lags. 4. LL indicates the log-likelihood value. 5. The LR-test statistic is asymptotically 
distributed as a chi-square with two degrees of freedom ( 2χ  (2)). Its critical value at the one-percent level of significance is 9.21, namely, 2

0.99 (2) 9.21χ = . 

 
The density graphs of SGED 8 distribution versus normal distribution are illustrated in Figure 1. 

Apparently, each of the SGED distributions is skewed towards the right, and is more leptokurtic and 
thicker than the normal distribution. These results show that the characteristics of the SGED 
distribution are consistent with the descriptive statistics of return series reported in Table 1, indicating 
that the SGED closely fits the empirical distribution of return series. 
 

Figure 1: Skewed-GED density against the normal distribution 
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8 The parameter ( , )υ λ  is obtained from the estimation results of the Shanghai and Shenzhen composite indices, respectively. 
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4.3. Volatility Forecasting Performance 

Table 3 tabulates the out-of-sample mean squared errors (MSE) for the various models under 
alternative forecast horizons. For the one-step-ahead forecast horizon, the GARCH-SGED models 
generate lower MSEs than the GARCH-N model for the Shanghai and Shenzhen composite indices. 
The multi-step-ahead prediction displays evidence that the GARCH-SGED model still outperforms the 
GARCH-N model for these two empirical data. The results indicate that the GARCH-SGED model is 
superior to the GARCH-N model in forecasting China stock market volatility when model selection is 
based on the loss function of MSE. 
 
Table 3: Out-of-sample mean squared error statistic 
 

Shanghai Shenzhen Forecast Horizon GARCH-N GARCH-SGED GARCH-N GARCH-SGED 
1 18.9208 18.6135* 21.4517 21.3110* 
2 18.6695 18.3596* 21.0712 20.8685* 
5 18.5710 18.3053* 20.8560 20.6347* 

10 18.3025 17.9907* 20.4459 20.1778* 
20 19.0199 18.7220* 21.4366 20.9154* 

Note: * denotes the minimum MSE among the two models of the given forecast horizon. 
 

Brailsford and Faff (1996) indicated that the various model rankings were sensitive to the error 
statistic used to assess the accuracy of the forecasts. Moreover, since volatility is being forecast, mean 
squared errors will raise the return innovation to the fourth power and hence make the loss function 
very sensitive to outliers. Accordingly, this study also provides mean absolute errors (MAE) as 
alternative useful forecast summary statistics. The out-of-sample mean absolute error for the various 
models under alternative forecast horizons is listed in Table 4. As Table 4 shows, the GARCH-SGED 
models generate lower MAEs than the GARCH-N models for the Shanghai and Shenzhen composite 
indices, across all forecast horizons. Therefore, the MAE selects the GARCH-SGED as the best model. 
 
Table 4: Out-of-sample mean absolute error statistic 
 

Shanghai Shenzhen Forecast Horizon GARCH-N GARCH-SGED GARCH-N GARCH-SGED 
1 2.0719 2.0409* 2.4120 2.3984* 
2 2.0559 2.0219* 2.3970 2.3785* 
5 2.0535 2.0114* 2.3820 2.3571* 

10 2.0594 1.9945* 2.3830 2.3429* 
20 2.1862 2.0866* 2.5570 2.4619* 

Note: * denotes the minimum MAE among the two models of the given forecast horizon. 
 

This study adopts DM-test (Diebold and Mariano, 1995) to further examine the statistical 
significance from the two competing models. The findings from the DM-test statistics across various 
forecast horizons are provided in Table 5. For the case of the Shanghai composite index, the DM 
probability values show that the GARCH-SGED model is statistically significant, at the 5% level, from 
the GARCH-N model for the 5- and 10-day-ahead forecast horizons, and statistically significant at the 
1% level for the remaining forecast horizons. On the other hand, for the case of the Shenzhen 
composite index, the DM probability values indicate that the GARCH-SGED model is at least 
statistically significant, at the 10% level, from the GARCH-N model, across various forecast horizons. 
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Table 5: DM-test results 
 

Shanghai Shenzhen Forecast Horizon DM-statistics P-value DM-statistics P-value 
1 2.8212*** 0.0023 2.1245** 0.0168 
2 2.8830*** 0.0019 2.2095** 0.0135 
5 2.2244** 0.0130 1.7620** 0.0390 

10 2.1756** 0.0147 1.5353* 0.0623 
20 2.4510*** 0.0071 3.0533*** 0.0011 

Notes: 1. *, ** and *** denote significantly at the 10%, 5% and 1% level, respectively. 2. Data represents the t-statistics and corresponding p-value of the 
Diebold and Mariano (1995) test. 3. The null hypothesis of DM-test is that of equal predictive ability of the two models; a significantly positive 
(negative) t-statistics indicates the GARCH-N model is dominated by (dominates) the GARCH-SGED model. 

 
Summarizing the results listed in Tables 3, 4 and 5 reveals that the GARCH-SGED models do 

indeed provide accurate volatility forecasts, superior to those provided by the GARCH-N models for 
stock markets in China, indicating that the assumption of skewed-GED returns innovation is essential 
for improving forecasting accuracy of volatility models. 
 
 
5.  Summary and Concluding Remarks 
The potential for China stock markets growth in the emerging countries has attracted qualified foreign 
institutional investor and global investors in recent years. However, this rapid growth is associated with 
high risk. Thus, accurate volatility forecasts are a crucial issue. This study adopts a rolling window 
scheme to implement and compare the relative ability to predict out-of-sample volatility for the 
GARCH-SGED and GARCH-N models when applied to the Shanghai and Shenzhen composite stock 
indices over various forecast horizons. 

Empirical results show that the GARCH-SGED models yield lower MSEs and MAEs than the 
GARCH-N models for the Shanghai and Shenzhen composite indices, across all forecast horizons. For 
further statistical testing, the DM statistics confirm that the volatility forecasts obtained using the 
GARCH-SGED model are more accurate than those generated using the GARCH-N model for stock 
markets in China. 

Accurate volatility forecasts are crucial to investors, institutional traders and risk managers, as 
well as academic researchers seeking to quantify market uncertainty. Overall, this study concludes that 
incorporating SGED returns innovation into the GARCH(1,1) model generates superior volatility 
forecasts for stock markets in China. These findings show the significance of both skewness and tail-
thickness in the conditional distribution of returns, and should be considered in making decisions 
regarding market timing, portfolio selection and VaR estimates when applies to emerging financial 
markets. 
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